Natural anthraquinone red dyes and their ecotoxicological impacts on different aquatic organisms

Natália O. de Farias¹, Amanda dos Santos¹, Gabriela Almeida¹, Riikka Räisänen² and Gisela A. Umbuzeiro¹ ¹School of Technology, University of Campinas, Limeira, SP, Brazil; ²Department of Education/Craft Studies, University of Helsinki, Helsinki, Finland.

Introduction & Aim

- In the textile industry, great quantities of water containing dyes are released into the aquatic ecosystem and can risks to humans and biota. pose on natural resources has Research increased and **biocolourants** have been investigated as an alternative source of colour for textiles to synthetic dyes.
- this work, we used two highly • In purified anthraquinone dyes (>98%), BioColour selected by project, dermorubin and dermocybin extracted from the fungus *Cortinarius sanguineus* and evaluated their aquatic toxicity.

Material and Methods

- toxicity was evaluated with • Acute freshwater microcrustacean Daphnia similis, the marine crustacean, the Parhyale hawaiensis and freshwater fish Danio rerio in an embryotoxicity (FET) test.
- Chronic toxicity tests were evaluated with the green microalgae *Raphidocelis* freshwater subcapitata and the crustacean Ceriodaphnia dubia.

Results

- Mutagenicity assay (Ames test) were previously performed and provided negative results for both dyes;
- Dermorubin was not toxic to any of the organisms;
 - Dermocybin was toxic to D. similis, C. dubia and zebrafish embryos.

Emerging pollutants in aquatic ecosystems

Natália Oliveira de Farias. Natural anthraquinone red dyes and their ecotoxicological impacts on different aquatic organisms, UNICAMP – Brazil

